login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006483 a(n) = Fibonacci(n)*2^n + 1.
(Formerly M2502)
6
1, 3, 5, 17, 49, 161, 513, 1665, 5377, 17409, 56321, 182273, 589825, 1908737, 6176769, 19988481, 64684033, 209321985, 677380097, 2192048129, 7093616641, 22955425793, 74285318145, 240392339457, 777925951489, 2517421260801, 8146546327553, 26362777698305 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

FORMULA

G.f.: -(-1+6*x^2)/((1-x)*(1-2*x-4*x^2)).

MAPLE

A006483:=-(-1+6*z**2)/(z-1)/(4*z**2+2*z-1); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

lst={}; Do[AppendTo[lst, Fibonacci[n]*2^n+1], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)

CoefficientList[Series[(-(- 1 + 6 x^2)) / ((1 - x) (1 - 2 x - 4 x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)

PROG

(MAGMA) [Fibonacci(n)*2^n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 09 2013

CROSSREFS

Cf. A063727, A087206.

Equals A103435 + 1.

Sequence in context: A165452 A106063 A215106 * A177960 A271659 A049540

Adjacent sequences:  A006480 A006481 A006482 * A006484 A006485 A006486

KEYWORD

nonn,easy

AUTHOR

Dennis S. Kluk (mathemagician(AT)ameritech.net)

EXTENSIONS

G.f. in Formula field corrected by Vincenzo Librandi, Jun 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 07:58 EDT 2018. Contains 316307 sequences. (Running on oeis4.)