login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271564
Number of 6's found in the first differences of a reduced residue system modulo a primorial p#.
2
0, 0, 2, 14, 142, 1690, 26630, 470630, 10169950, 280323050, 8278462850, 293920842950, 11604850743850, 481192519512250, 21869408938627250, 1124832660535333750, 64590101883781223750, 3837395864206055401250, 250972362651045466681250, 17415757437491856599406250, 1243227958252662737649043750
OFFSET
1,3
COMMENTS
Technically, the formula is undefined modulo 2# or 3#, but their values are listed as "0", since there are no 6's in the first differences of their reduced residue systems. For our purposes, by "6's", we mean n such that n,n+6 are relatively prime to the primorial modulus, while n+1,n+2,n+3,n+4,n+5 all share a factor (or factors) with p#. The values of this sequence are tied to actual distribution of sexy primes over N (conjecture).
LINKS
FORMULA
a(n) = 2*product(p-2)-2*product(p-3), where p runs over the primes greater than 3.
EXAMPLE
Modulo 5# (=30), there are (2*(5-2)-2*(5-3))=2 occurrences where n,n+6 are relatively prime, but n+1,n+2,n+3,n+4,n+5 share a factor with 30; they are n=1,n=23(mod30). Modulo 7# (=210), there are (2*(7-2)*(5-2)-2*(7-3)*(5-3))=30-16=14 such occurrences.
MATHEMATICA
Table[2 Product[Prime@ k - 2, {k, 3, n}] - 2 Product[Prime@ k - 3, {k, 3, n}], {n, 21}] (* Michael De Vlieger, Apr 11 2016 *)
PROG
(PARI) a(n) = 2*prod(k=3, n, prime(k)-2) - 2*prod(k=3, n, prime(k)-3); \\ Michel Marcus, Apr 10 2016
CROSSREFS
Cf. A059861 (d=2,4 values), A049296, A271565.
Sequence in context: A245267 A328004 A361638 * A100510 A354290 A346433
KEYWORD
nonn,easy
AUTHOR
Logan W. Wilbur, Apr 09 2016
EXTENSIONS
Corrected and extended by Michel Marcus, Apr 10 2016
STATUS
approved