%I #19 Apr 10 2016 12:16:07
%S 8,3,4,0,6,1,5,7,3,3,9,2,4,0,5,6,4,1,4,3,8,4,5,7,1,6,2,9,5,6,8,8,3,0,
%T 7,5,3,8,0,6,1,2,9,4,7,3,9,2,0,1,1,6,6,9,9,4,0,3,2,6,4,1,1,9,0,2,3,8,
%U 3,7,6,7,9,1,9,5,4,1,3,5,9,3,9,1,0,0,8,3,3,0,7,3,4,6,3,2,9,6,8,5,7,3,3,7,2
%N Decimal expansion of the real part of the derivative of the Riemann function zeta(z) at z=i, the imaginary unit.
%C The corresponding imaginary part of zeta'(i) is in A271522.
%H Stanislav Sykora, <a href="/A271521/b271521.txt">Table of n, a(n) for n = -1..2000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>
%e 0.083406157339240564143845716295688307538061294739201166994032641190...
%t RealDigits[Re[Zeta'[I]],10,120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)
%o (PARI) real(zeta'(I)) \\ With realprecision=2100, it takes a few minutes
%Y Cf. A084448 (-zeta'(-1)), A179311 (real(zeta(i))), A179836 (imag(-zeta(i))), A271522 (-imag(zeta'(i))).
%K nonn,cons
%O -1,1
%A _Stanislav Sykora_, Apr 09 2016