

A271521


Decimal expansion of the real part of the derivative of the Riemann function zeta(z) at z=i, the imaginary unit.


3



8, 3, 4, 0, 6, 1, 5, 7, 3, 3, 9, 2, 4, 0, 5, 6, 4, 1, 4, 3, 8, 4, 5, 7, 1, 6, 2, 9, 5, 6, 8, 8, 3, 0, 7, 5, 3, 8, 0, 6, 1, 2, 9, 4, 7, 3, 9, 2, 0, 1, 1, 6, 6, 9, 9, 4, 0, 3, 2, 6, 4, 1, 1, 9, 0, 2, 3, 8, 3, 7, 6, 7, 9, 1, 9, 5, 4, 1, 3, 5, 9, 3, 9, 1, 0, 0, 8, 3, 3, 0, 7, 3, 4, 6, 3, 2, 9, 6, 8, 5, 7, 3, 3, 7, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The corresponding imaginary part of zeta'(i) is in A271522.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..2000
Eric Weisstein's World of Mathematics, Riemann Zeta Function


EXAMPLE

0.083406157339240564143845716295688307538061294739201166994032641190...


MATHEMATICA

RealDigits[Re[Zeta'[I]], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)


PROG

(PARI) real(zeta'(I)) \\ With realprecision=2100, it takes a few minutes


CROSSREFS

Cf. A084448 (zeta'(1)), A179311 (real(zeta(i))), A179836 (imag(zeta(i))), A271522 (imag(zeta'(i))).
Sequence in context: A069995 A199863 A181180 * A117889 A021927 A145594
Adjacent sequences: A271518 A271519 A271520 * A271522 A271523 A271524


KEYWORD

nonn,cons


AUTHOR

Stanislav Sykora, Apr 09 2016


STATUS

approved



