login
A271024
Number T(n,k) of set partitions of [n] having exactly k pairs (i,j) with i < j such that i and j are in different blocks; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2 read by rows.
2
1, 1, 1, 1, 1, 0, 3, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 0, 5, 0, 10, 10, 15, 10, 1, 1, 0, 0, 0, 0, 6, 0, 0, 15, 25, 0, 60, 35, 45, 15, 1, 1, 0, 0, 0, 0, 0, 7, 0, 0, 0, 21, 21, 35, 0, 105, 105, 105, 210, 140, 105, 21, 1, 1, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 28, 28
OFFSET
0,7
LINKS
FORMULA
T(n,k) = A271023(n,n*(n-1)/2-k).
T(n,n-1) = n for n >= 3.
EXAMPLE
T(3,0) = 1: 123.
T(3,2) = 3: 12|3, 13|2, 1|23.
T(3,3) = 1: 1|2|3.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 0, 3, 1;
1, 0, 0, 4, 3, 6, 1;
1, 0, 0, 0, 5, 0, 10, 10, 15, 10, 1;
1, 0, 0, 0, 0, 6, 0, 0, 15, 25, 0, 60, 35, 45, 15, 1;
MAPLE
b:= proc(n, l) option remember; `if`(n=0, x^(m->
add(j*(m-j)/2, j=l))(add(i, i=l)), b(n-1, [l[], 1])+
add(b(n-1, subsop(j=l[j]+1, l)), j=1..nops(l)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [])):
seq(T(n), n=0..10);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, x^Function[m, Sum[(1/2)*j*(m - j), {j, l}]][Total[l]], Sum[b[n - 1, ReplacePart[l, j -> l[[j]] + 1]], {j, 1, Length[l]}] + b[n - 1, Append[l, 1]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, {}]];
Flatten[Table[T[n], {n, 0, 10}]] (* Jean-François Alcover, May 27 2018, translated from Maple *)
CROSSREFS
Row sums give A000110.
Sequence in context: A357638 A238414 A195151 * A125208 A333351 A193140
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Mar 28 2016
STATUS
approved