OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015 (page 19, 5th row; page 21, 4th row).
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: (2+13*x-3*x^2+13*x^3-x^4)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5).
From G. C. Greubel, Apr 01 2016: (Start)
a(2*m) == 0 (mod 2).
a(4*m + 2) == 0 (mod 4).
E.g.f.: (2 +21*x +24*x^2 +9*x^3 +x^4)*exp(x). (End)
a(n)+a(n+2)-2*a(n+1) = 6*A033816(n+1). - Wesley Ivan Hurt, Apr 02 2016
MAPLE
A270868:=n->n^4 + 3*n^3 + 8*n^2 + 9*n + 2: seq(A270868(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2016
MATHEMATICA
Table[n^4 + 3 n^3 + 8 n^2 + 9 n + 2, {n, 0, 40}]
PROG
(Magma) [n^4+3*n^3+8*n^2+9*n+2: n in [0..40]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 01 2016
STATUS
approved