OFFSET
1,2
COMMENTS
The RG functions used here are defined by f(1)=1, f(j) <= 1+max_{i<j} f(i).
T(n,p) is the number of elements in the p-th subset in all set partitions of [n]. - Joerg Arndt, Mar 14 2016
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n,n) = 1.
Conjecture: T(n,n-1) = 2+n*(n-1)/2 for n>1.
Conjecture: T(n+1,n-1) = 2+n*(n+1)*(3*n^2-5*n+26)/24 for n>1.
Sum_{k=1..n} k * T(n,k) = A346772(n). - Alois P. Heinz, Aug 03 2021
EXAMPLE
The two restricted growth functions of length 2 are (1,1) and (1,2). The 1 appears 3 times and the 2 once, so T(2,1)=3 and T(2,2)=1.
1;
3,1;
9,5,1;
30,21,8,1;
112,88,47,12,1;
463,387,253,97,17,1;
2095,1816,1345,675,184,23,1;
10279,9123,7304,4418,1641,324,30,1;
54267,48971,41193,28396,13276,3645,536,38,1;
306298,279855,243152,183615,102244,36223,7473,842,47,1;
1838320,1695902,1506521,1211936,770989,334751,90223,14303,1267,57,1;
11677867,10856879,9799547,8237223,5795889,2965654,995191,207186,25820, 1839,68,1;
MAPLE
b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p->
[p[1], p[2]+p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)[2]):
seq(T(n), n=0..12); # Alois P. Heinz, Mar 14 2016
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, {p[[1]], p[[2]] + p[[1]]*x^j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 0][[2]] ]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 07 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Mar 13 2016
STATUS
approved