login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124427 Sum of the sizes of the blocks containing the element 1 in all set partitions of {1,2,...,n}. 6
0, 1, 3, 9, 30, 112, 463, 2095, 10279, 54267, 306298, 1838320, 11677867, 78207601, 550277003, 4055549053, 31224520322, 250547144156, 2090779592827, 18110124715919, 162546260131455, 1509352980864191, 14478981877739094, 143299752100925452, 1461455003961745247 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..575

FORMULA

a(n) = Sum(k*binomial(n-1,k-1)*B(n-k), k=1..n) = Sum(k*A056857(n,k), k=1..n), where B(q) are the Bell numbers (A000110).

a(n) = (n-1)*B(n-1)+B(n). - Vladeta Jovovic, Nov 10 2006

EXAMPLE

a(3)=9 because the 5 (=A000110(3)) set partitions of {1,2,3} are 123, 12|3, 13|2, 1|23 and 1|2|3 and 3+2+2+1+1=9.

MAPLE

with(combinat): seq(add(k*binomial(n-1, k-1)*bell(n-k), k=1..n), n=0..30);

MATHEMATICA

Table[Sum[Binomial[n-1, k-1] * BellB[n-k] * k, {k, 1, n}], {n, 0, 22}] (* Geoffrey Critzer, Jun 14 2013 *)

Flatten[{0, Table[(n-1)*BellB[n-1] + BellB[n], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 19 2016, after Vladeta Jovovic *)

CROSSREFS

Cf. A000110, A056857.

Column p=1 of A270236 or of A270702.

Main diagonal of A270701.

Sequence in context: A107379 A117428 A134168 * A055730 A120018 A091353

Adjacent sequences:  A124424 A124425 A124426 * A124428 A124429 A124430

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Nov 10 2006

EXTENSIONS

a(0)=0 prepended by Alois P. Heinz, Mar 17 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 10:19 EST 2018. Contains 318086 sequences. (Running on oeis4.)