login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270121 Denominators in a perturbed Engel series. 4
7, 112, 403200, 1755760043520000, 53695136666462381094317154204367872000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sum of the series 6/a(1)+1/a(2)+1/a(3)+... is a transcendental number, and has a continued fraction expansion whose coefficients are given explicitly in terms of the sequence a(n) and the ratios a(n+1)/a(n).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..8

Andrew N. W. Hone, Curious continued fractions, nonlinear recurrences and transcendental numbers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.4.

Andrew N. W. Hone, Continued fractions for some transcendental numbers, arXiv:1509.05019 [math.NT], 2015-2016, Monatsh. Math. DOI: 10.1007/s00605-015-0844-2.

FORMULA

The sequence is generated by taking a(n+1)=b(n-1)*a(n)*(1+n*a(n)), b(n)=a(n+1)/a(n) for n>=1 with initial values a(1)=7,b(0)=2. Alternatively, if a(1)=7,a(2)=112 are given then a(n+1)*a(n-1)=a(n)^2*(1+n*a(n)) for n>=2.

Sum_{n>=1} 1/a(n) = -5/7 + A270137. - Amiram Eldar, Nov 20 2020

MATHEMATICA

a[1] = 7; a[2] = 112;

a[n_] := a[n] = (a[n-1]^2 (1+(n-1)a[n-1]))/a[n-2];

Array[a, 5] (* Jean-Fran├žois Alcover, Dec 16 2018 *)

CROSSREFS

Cf. A112373, A114552, A114550, A270137.

Sequence in context: A010795 A293456 A099153 * A079296 A081531 A142537

Adjacent sequences:  A270118 A270119 A270120 * A270122 A270123 A270124

KEYWORD

nonn

AUTHOR

Andrew Hone, Mar 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 10:25 EDT 2021. Contains 343148 sequences. (Running on oeis4.)