This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114550 Decimal expansion of the constant Sum_{n>=0} 1/A112373(n), where the partial quotients of the continued fraction A114551 satisfy A114551(2n) = A112373(n) and A114551(2n+1) = A112373(n+1)/A112373(n). 5
 2, 5, 8, 4, 4, 0, 1, 7, 2, 4, 0, 1, 9, 7, 7, 6, 7, 2, 4, 8, 1, 2, 0, 7, 6, 1, 4, 7, 1, 5, 3, 3, 3, 1, 3, 4, 2, 1, 1, 2, 3, 8, 2, 0, 9, 0, 4, 6, 7, 9, 6, 9, 0, 0, 0, 3, 1, 3, 4, 3, 8, 5, 8, 3, 9, 6, 7, 5, 4, 4, 8, 2, 9, 8, 9, 1, 8, 6, 7, 9, 6, 3, 6, 1, 4, 0, 8, 8, 7, 4, 6, 9, 7, 7, 8, 0, 1, 8, 6, 9, 6, 4, 2, 7, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A112373 is defined by the recurrence: let b(n) = A112373(n), then b(n) =(b(n-1)^3 + b(n-1)^2)/b(n-2) for n>=2 with b(0)=b(1)=1. Thus the sum of unit fractions 1/A112373(n) converges rapidly. LINKS Andrew N. W. Hone, Curious continued fractions, nonlinear recurrences and transcendental numbers, arXiv:1507.00063 [math.NT], 2015. EXAMPLE 2.584401724019776724812076147153331342112382090467969... = Sum_{n>=0} 1/A112373(n) = 1/1 +1/1 +1/2 +1/12 +1/936 +1/68408496 +... = [2;1,1,2,2,6,12,78,936,73086,68408496,...] (continued fraction). CROSSREFS Cf. A112373, A114551 (continued fraction), A114552. Sequence in context: A075175 A075173 A163337 * A094001 A020859 A062089 Adjacent sequences:  A114547 A114548 A114549 * A114551 A114552 A114553 KEYWORD cons,nonn AUTHOR Paul D. Hanna, Dec 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.