login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270079
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.
4
1, 5, 12, 20, 32, 44, 68, 72, 100, 112, 156, 160, 204, 216, 276, 280, 340, 352, 428, 432, 508, 520, 612, 616, 708, 720, 828, 832, 940, 952, 1076, 1080, 1204, 1216, 1356, 1360, 1500, 1512, 1668, 1672, 1828, 1840, 2012, 2016, 2188, 2200, 2388, 2392, 2580, 2592
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 10 2016: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3)+a(n-4)-a(n-5)-a(n-6)+a(n-7) for n>10.
G.f.: (1+4*x+6*x^2+4*x^3+4*x^4+6*x^6-12*x^7-x^8+4*x^9+4*x^10-4*x^12) / ((1-x)^3*(1+x)^2*(1+x^2)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=62; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A366101 A270333 A270938 * A266937 A270214 A063559
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 10 2016
STATUS
approved