|
|
A063559
|
|
Smallest k such that 3^k has exactly n 4's in its decimal representation.
|
|
0
|
|
|
1, 5, 12, 20, 59, 58, 86, 63, 72, 139, 125, 159, 136, 211, 204, 170, 196, 197, 271, 302, 218, 308, 344, 392, 309, 351, 434, 488, 490, 414, 529, 452, 484, 523, 538, 526, 594, 522, 605, 592, 705, 670, 649, 672, 771, 785, 691, 819, 788, 887, 808
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..50.
|
|
MATHEMATICA
|
a = {}; Do[k = 1; While[ Count[ IntegerDigits[3^k], 4] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
|
|
CROSSREFS
|
Sequence in context: A270079 A266937 A270214 * A259913 A224824 A121291
Adjacent sequences: A063556 A063557 A063558 * A063560 A063561 A063562
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 10 2001
|
|
EXTENSIONS
|
Name corrected by Jon E. Schoenfield, Jun 26 2018
|
|
STATUS
|
approved
|
|
|
|