OFFSET
0,1
COMMENTS
a(n) is the smallest k such that (k^n + 1) | k! if it exists, otherwise a(n) = 0.
EXAMPLE
For n=2, a(2) is equal to 18 because k=18 is the least natural number k such that (k^2+1)|k! (see A120416).
MATHEMATICA
For[k = 0, k < 11, k++, x = 0; r = 0; n = 1; While[x != 1, If[Mod[n!, n^k + 1] != 0, x = 0, x = 1; r = n]; n++]; Print[r]]
Table[SelectFirst[Range[10^4], Divisible[#!, #^n + 1] &], {n, 0, 6}] (* Michael De Vlieger, Mar 04 2016, Version 10 *)
PROG
(PARI) a(n) = {my(k = 1); while (k! % (k^n+1), k++); k; } \\ Michel Marcus, Mar 03 2016
CROSSREFS
KEYWORD
nonn,more
AUTHOR
José Hernández, Mar 02 2016
EXTENSIONS
a(7)-a(9) from Hiroaki Yamanouchi, Apr 04 2016
a(10) from Giovanni Resta, Apr 20 2016
STATUS
approved