

A258429


Primes p such that p  1 = (tau(p  1)  1)^k for some k >= 0, where tau(n) is the number of divisors of n (A000005).


3




OFFSET

1,1


COMMENTS

Conjecture: the sequence is finite.
Corresponding values of numbers k: 0, 2, 2, 4, ...
A fermat prime from A019434 of the form F(n) = 2^(2^n) + 1 is a term if k = 2^n * log(2) / log(2^n) is an integer.


LINKS

Table of n, a(n) for n=1..4.


EXAMPLE

65537 (prime) is in the sequence because 65537  1 = (tau(65536)  1)^4 = 16^4.


PROG

(MAGMA) [2] cat [n+1: n in [A219338(n)]  IsPrime(n+1)]
(MAGMA) Set(Sort([n: n in[1..1000000], k in [0..100]  IsPrime(n) and (n1) eq (NumberOfDivisors(n1)  1)^k]))
(PARI) listp(nn) = {print1(p=2, ", "); forprime(p=5, nn, expo = valuation(x=(p1), y=(numdiv(p1)1)); if (x == y^expo, print1(p, ", ")); ); } \\ Michel Marcus, Jun 04 2015


CROSSREFS

Cf. A000005, A019434, A219338, A007516, A004249, A249759.
Sequence in context: A124374 A113617 A226069 * A117839 A269665 A080689
Adjacent sequences: A258426 A258427 A258428 * A258430 A258431 A258432


KEYWORD

nonn


AUTHOR

Jaroslav Krizek, May 29 2015


STATUS

approved



