login
A269210
Number of n X 4 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three exactly once.
1
108, 6528, 308544, 12548544, 474091776, 17118725376, 599456856000, 20531285093184, 691495131961728, 22985647571590272, 756022683316823616, 24651356966323488960, 797979183054277922304, 25672248307708057755648
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 62*a(n-1) - 1031*a(n-2) + 2180*a(n-3) - 1535*a(n-4) + 350*a(n-5) - 25*a(n-6) for n>7.
Empirical g.f.: 12*x*(9 - 14*x + 1263*x^2 - 7188*x^3 + 10471*x^4 - 4926*x^5 + 897*x^6) / ((1 - x)^2*(1 - 30*x + 5*x^2)^2). - Colin Barker, Jan 20 2019
EXAMPLE
Some solutions for n=2:
..3..1..0..0. .1..0..3..2. .0..3..2..2. .0..2..3..2. .2..2..2..3
..0..0..0..0. .2..3..2..3. .3..2..2..0. .0..2..2..1. .0..0..3..2
CROSSREFS
Column 4 of A269214.
Sequence in context: A147821 A269148 A143403 * A299857 A132053 A273439
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 20 2016
STATUS
approved