OFFSET
4,1
COMMENTS
It seems that a(n) = A081064(n,5) is the number of labeled acyclic directed graphs with n nodes and k = 5 arcs (see Rodionov (1992)). The reason is that we may label the graphs with the n objects and draw an arc from X towards Y if and only if X < Y. The 5 arcs of the directed graph correspond to the 3-set of binary order relationships and they are consistent because the directed graph is acyclic. - Petros Hadjicostas, Apr 10 2020
LINKS
V. I. Rodionov, On the number of labeled acyclic digraphs, Discr. Math. 105 (1-3) (1992), 319-321.
FORMULA
a(n) = (n-3)*(n-2)*(n-1)*n*(n^6 + n^5 - 15*n^4 - 45*n^3 - 4*n^2 + 326*n + 900)/120. - Vaclav Kotesovec, Apr 11 2020
Conjectures from Colin Barker, Apr 11 2020: (Start)
G.f.: 12*x^4*(9 + 416*x + 1826*x^2 + 46*x^3 + 291*x^4 - 78*x^5 + 10*x^6) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>12.
(End)
MAPLE
a := n -> (1/120)*(n-3)*(n-2)*(n-1)*n*(n*(n*(n*(n*(n^2+n-15)-45)-4)+326)+900):
seq(a(n), n=4..25); # Peter Luschny, Apr 11 2020
MATHEMATICA
Table[(n - 3)*(n - 2)*(n - 1)*n*(n^6 + n^5 - 15*n^4 - 45*n^3 - 4*n^2 + 326*n + 900)/120, {n, 4, 25}] (* Wesley Ivan Hurt, Apr 11 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, May 04 2009
EXTENSIONS
More terms from Vaclav Kotesovec, Apr 11 2020
Offset changed by Petros Hadjicostas, Apr 11 2020
STATUS
approved