login
A268884
Number of nX6 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
1
20, 475, 9996, 186732, 3283890, 55491832, 911930096, 14681855846, 232688402028, 3642322709900, 56444213311842, 867475989937560, 13239446101273360, 200865483664370358, 3031934392327858732, 45561723449682618252
OFFSET
1,1
COMMENTS
Column 6 of A268886.
LINKS
FORMULA
Empirical: a(n) = 42*a(n-1) -665*a(n-2) +5138*a(n-3) -21972*a(n-4) +55274*a(n-5) -83769*a(n-6) +76202*a(n-7) -40273*a(n-8) +11304*a(n-9) -1296*a(n-10) for n>12
EXAMPLE
Some solutions for n=4
..1..0..0..0..0..0. .0..0..0..1..1..0. .1..0..0..0..1..1. .1..0..1..0..0..1
..0..0..1..0..0..1. .0..1..0..0..0..1. .0..0..0..0..0..1. .0..0..1..0..0..1
..1..0..0..1..0..1. .0..1..0..0..0..0. .1..0..1..0..0..0. .1..0..1..0..0..0
..1..1..0..1..0..1. .0..0..0..0..0..0. .0..0..1..0..1..0. .0..1..0..0..0..1
CROSSREFS
Cf. A268886.
Sequence in context: A049382 A288034 A272553 * A324069 A065412 A159753
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 15 2016
STATUS
approved