%I #4 Feb 15 2016 11:32:21
%S 20,475,9996,186732,3283890,55491832,911930096,14681855846,
%T 232688402028,3642322709900,56444213311842,867475989937560,
%U 13239446101273360,200865483664370358,3031934392327858732,45561723449682618252
%N Number of nX6 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 6 of A268886.
%H R. H. Hardin, <a href="/A268884/b268884.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 42*a(n-1) -665*a(n-2) +5138*a(n-3) -21972*a(n-4) +55274*a(n-5) -83769*a(n-6) +76202*a(n-7) -40273*a(n-8) +11304*a(n-9) -1296*a(n-10) for n>12
%e Some solutions for n=4
%e ..1..0..0..0..0..0. .0..0..0..1..1..0. .1..0..0..0..1..1. .1..0..1..0..0..1
%e ..0..0..1..0..0..1. .0..1..0..0..0..1. .0..0..0..0..0..1. .0..0..1..0..0..1
%e ..1..0..0..1..0..1. .0..1..0..0..0..0. .1..0..1..0..0..0. .1..0..1..0..0..0
%e ..1..1..0..1..0..1. .0..0..0..0..0..0. .0..0..1..0..1..0. .0..1..0..0..0..1
%Y Cf. A268886.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 15 2016