OFFSET
0,5
COMMENTS
The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
LINKS
Peter Luschny, The P-transform.
FORMULA
EXAMPLE
Triangle starts:
[1],
[0, 1],
[0, 8, 6],
[0, 180, 240, 90],
[0, 8064, 14560, 10080, 2520],
[0, 604800, 1330560, 1285200, 604800, 113400],
[0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400].
MAPLE
A268438 := proc(n, k) local F, T;
F := proc(n, k) option remember;
`if`(n=0 and k=0, 1, `if`(n=k, (4*n-2)*F(n-1, k-1),
F(n-1, k)*(n+k))) end;
T := proc(n, k) option remember;
`if`(k=0 and n=0, 1, `if`(k<=0 or k>n, 0,
(4*n-2)*n*(n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end:
T(n, k)/F(n, k) end:
for n from 0 to 6 do seq(A268438(n, k), k=0..n) od;
# Alternatively, with the function PTrans defined in A269941:
A268438_row := n -> PTrans(n, n->n/(n+1), (n, k)->(-1)^k*(2*n)!):
seq(lprint(A268438_row(n)), n=0..8);
MATHEMATICA
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
PROG
(Sage)
A268438 = lambda n, k: (factorial(2*n)/falling_factorial(n+k, n))*sum((-1)^(m+k)* binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([A268438(n, m) for m in (0..n)])
(Sage) # uses[PtransMatrix from A269941]
PtransMatrix(7, lambda n: n/(n+1), lambda n, k: (-1)^k*factorial(2*n))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 07 2016
STATUS
approved