login
Irregular triangle read by rows: T(n,k) = floor(n/(prime(k)-1)), n>=1, 1 <= k <= pi(n+1), where pi is A000720.
3

%I #15 Jan 08 2016 14:29:00

%S 1,2,1,3,1,4,2,1,5,2,1,6,3,1,1,7,3,1,1,8,4,2,1,9,4,2,1,10,5,2,1,1,11,

%T 5,2,1,1,12,6,3,2,1,1,13,6,3,2,1,1,14,7,3,2,1,1,15,7,3,2,1,1,16,8,4,2,

%U 1,1,1,17,8,4,2,1,1,1,18,9,4,3,1,1,1,1

%N Irregular triangle read by rows: T(n,k) = floor(n/(prime(k)-1)), n>=1, 1 <= k <= pi(n+1), where pi is A000720.

%H H. T. Davis, <a href="/A002443/a002443.pdf">Tables of the Mathematical Functions</a>, Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX. [Annotated scan of pages 204-208 of Volume 2.] See Table 1 on page 205.

%e Triangle begins:

%e [1]

%e [2, 1]

%e [3, 1]

%e [4, 2, 1]

%e [5, 2, 1]

%e [6, 3, 1, 1]

%e [7, 3, 1, 1]

%e [8, 4, 2, 1]

%e [9, 4, 2, 1]

%e [10, 5, 2, 1, 1]

%e [11, 5, 2, 1, 1]

%e [12, 6, 3, 2, 1, 1]

%e [13, 6, 3, 2, 1, 1]

%e [14, 7, 3, 2, 1, 1]

%e ...

%p with(numtheory);

%p f:=n->[seq(floor(n/(ithprime(i)-1)),i=1..pi(n+1))];

%p for n from 1 to 20 do lprint(f(n)); od:

%Y Cf. A000720, A002443, A002444, A266743.

%K nonn,tabf

%O 1,2

%A _N. J. A. Sloane_, Jan 08 2016