login
A266305
Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to 2n.
3
1, 1, 7, 74, 1060, 19013, 408650, 10219360, 291158230, 9302358947, 329192040880, 12775809098058, 539351216354728, 24600280965461923, 1205263251360664310, 63115789721408960624, 3517483455875467926588, 207834769804597591153769, 12976002600530598793672490
OFFSET
0,3
LINKS
FORMULA
a(n) = A138177(2n,n).
EXAMPLE
a(2) = 7:
[1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]
[1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
MAPLE
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
a:= n-> add(A(2*n, n-j)*(-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[2*n, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
CROSSREFS
Sequence in context: A295245 A365844 A341330 * A098118 A097821 A337387
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 31 2016
STATUS
approved