OFFSET
0,2
FORMULA
From Vaclav Kotesovec, Aug 31 2020: (Start)
a(n) ~ (2 + sqrt(n))^(2*n + 3/2) / (2*n*sqrt(2*Pi)).
a(n) ~ exp(4*sqrt(n) - 4) * n^(n - 1/4) / sqrt(8*Pi) * (1 + 25/(3*sqrt(n)) + 427/(18*n)). (End)
MATHEMATICA
a[n_] := Sum[If[n == 0, Boole[n == k], n^(n - k)] * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Aug 25 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, n^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved