login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264797
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 342", based on the 5-celled von Neumann neighborhood.
3
1, 5, 8, 24, 17, 53, 32, 96, 49, 149, 72, 216, 97, 293, 128, 384, 161, 485, 200, 600, 241, 725, 288, 864, 337, 1013, 392, 1176, 449, 1349, 512, 1536, 577, 1733, 648, 1944, 721, 2165, 800, 2400, 881, 2645, 968, 2904, 1057, 3173, 1152, 3456, 1249, 3749, 1352
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Apr 03 2016: (Start)
a(n) = 2*a(n-2)-2*a(n-6)+a(n-8) for n>7.
G.f.: (1+5*x+6*x^2+14*x^3+x^4+5*x^5) / ((1-x)^3*(1+x)^3*(1+x^2)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=342; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A192651 A105963 A270125 * A270905 A253078 A270185
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 03 2016
STATUS
approved