This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264390 Partial sums of A267326. 2
 8, 32, 136, 160, 408, 720, 1176, 1200, 2168, 2912, 3976, 4288, 5752, 7120, 10344, 10368, 12824, 15728, 18776, 19520, 25448, 28640, 33064, 33376, 39624, 44016, 52760, 54128, 61096, 70768, 78712, 78736, 92568, 99936, 114072, 116976, 128232, 137376, 156408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Christopher Heiling, Table of n, a(n) for n = 1..150 FORMULA a(n) = Sum_{k = 1..n} A000118(k^2). EXAMPLE For n = 2 the a(n) = 32 integral solutions of x^2 + y^2 + z^2 + t^2 <= 2^2 are: {x,y,z,t} = {{0,0,0,1}; {0,0,1,0}; {0,1,0,0}; {1,0,0,0}; {0,0,0,-1}; {0,0,-1,0}; {0,-1,0,0}; {-1,0,0,0}; {0,0,0,2}; {0,0,0,-2}; {0,0,2,0}; {0,0,-2,0}; {0,2,0,0}; {0,-2,0,0}; {2,0,0,0}; {-2,0,0,0}; {1,1,1,1}; {1,1,1,-1}; {1,1,-1,1}; {1,-1,1,1}; {-1,1,1,1}; {1,1,-1,-1}; {1,-1,1,-1}; {-1,1,1,-1}; {1,-1,-1,1}; {-1,1,-1,1}; {1,-1,-1,-1}; {-1,1,-1,-1}; {-1,-1,1,-1}; {-1,-1,1,-1}; {-1,-1,-1,1}; {-1,-1,-1,-1}}. MAPLE terms := 42: (add(q^(m^2), m = -terms..terms))^4: seq(add(coeff(%, q, k^2), k = 1..n), n = 1..terms); # Peter Bala, Jan 15 2016 PROG (PARI) a000118(k) = if(k<1, k==0, 8 * sumdiv( k, d, if( d%4, d))); a(n) = sum(k=1, n, a000118(k^2)); \\ Altug Alkan, Jan 19 2016 CROSSREFS Partial sums of A267326. Cf. A000118, A046897. Sequence in context: A081654 A307004 A264280 * A253105 A290915 A200153 Adjacent sequences:  A264387 A264388 A264389 * A264391 A264392 A264393 KEYWORD nonn,easy AUTHOR Christopher Heiling, Jan 12 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 13:37 EDT 2019. Contains 327253 sequences. (Running on oeis4.)