

A264011


Exponents n such that 2^(2*n+1)  3*2^n  1 (A195461) is prime


0



2, 3, 4, 5, 8, 16, 27, 28, 33, 36, 48, 66, 90, 112, 508, 1036, 1041, 1560, 2208, 2668, 4388, 6097, 6517, 11353, 17284, 22385, 24740, 29805, 77188, 135219, 199237
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Obtained using a LucasLehmertype test due to Williams.
Next term > 200000.


LINKS

Table of n, a(n) for n=1..31.
H. C. Williams, A class of primality tests for trinomials which includes the LucasLehmer test, Pacific J. Math. Volume 98, Number 2 (1982), 477494.


PROG

(PARI) for(n=1, 10^9, if(ispseudoprime(2^(2*n+1)  3*2^n  1), print1(n, ", "))); \\ Joerg Arndt, Apr 08 2016


CROSSREFS

Cf. A195461.
Sequence in context: A333264 A247461 A281303 * A337280 A081711 A055638
Adjacent sequences: A264008 A264009 A264010 * A264012 A264013 A264014


KEYWORD

nonn,more


AUTHOR

Fabrice Lavier, Jan 03 2016


STATUS

approved



