login
A264009
Table T(i,j) = nonnegative k at which lcm(i+k,j+k) reaches the minimum, read by antidiagonals (i>=1, j>=1).
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 5, 2, 2, 0, 0, 2, 2, 5, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 1, 1, 4, 1, 0, 0, 0, 1, 2, 3, 0, 0, 0, 3, 2, 1, 0, 0, 0, 9, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 9, 0
OFFSET
1,30
COMMENTS
T(i,j) = T(j,i).
T(i,j) <= |i-j|.
If i divides j or vice versa, then T(i,j) = 0.
EXAMPLE
Let i=10, j=3. Then lcm(i,j)=30, lcm(i+1,j+1)=44, lcm(i+2,j+2)=60, lcm(i+3,j+3)=78, and lcm(i+4,j+4)=14, which is the minimum. Hence T(10,3)=T(3,10)=4.
CROSSREFS
Cf. A003990.
Sequence in context: A325675 A374203 A279948 * A281155 A321432 A220093
KEYWORD
nonn,tabl
AUTHOR
Ivan Neretin, Oct 31 2015
STATUS
approved