login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263573
Intersection of A024365 and A129912.
0
6, 30, 60, 180, 210, 2310, 4620, 60060, 510510, 10810800, 116396280, 200560490130, 401120980260
OFFSET
1,1
COMMENTS
The two sequences involve areas of primitive Pythagorean triples and primorial products. Intersections are only considered once (no repeats). Conjecture: the sequence is infinite.
Conjecture: The next two entries are a(12) = 200560490130, a(13) = 401120980260.
From G. C. Greubel, Dec 29 2015: (Start)
6|a(n) for n>=1,
30|a(n) for n>=2,
a(n)/6 = {1, 5, 10, 30, 35, 385, 770, 10010, ...} is a subset of values found in A008706.
(End)
a(12) and a(13) confirmed. a(14) > 2*10^31, if it exists. - Giovanni Resta, Mar 31 2017
EXAMPLE
A024365 begins {6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, ...}.
A129912 begins {1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, ...}.
So, common entries encountered are {6, 30, 60, 180, 210, 2310, ...}.
Specifically, we see that A024365(1) = A129912(3), A024365(2) = A129912(5), A024365(3) = A129912(6), A024365(5) = A129912(7).
These are then the first four entries of the sequence (6, 30, 60, 180).
MATHEMATICA
s = 6 Take[Sort[(Times @@ #)/12 & /@ ({Times @@ #, (Last[#]^2 - First[#]^2)/2} & /@ Select[Subsets[Range[1, 3600, 2], {2}], GCD @@ # == 1 &])], 1800]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m - 1], m++]; t = f[m]; Intersection[s, t] (* Michael De Vlieger, Oct 22 2015, after Harvey P. Dale at A020885 and Jean-François Alcover at A129912 *) (* or *)
ok[n_] := Block[{a, f = Power @@@ FactorInteger[2 n]}, SelectFirst[ Subsets[f, {1, Floor[ Length[f]/2]}], (a = Times @@ #; IntegerQ@ Sqrt[a^2 + (2 n/a)^2]) &, {}] != {}]; pr[n_] := Product[ Prime[n+1-i]^i, {i, n}]; upto[mx_] := Block[{ric, j=1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1 && ok[n], Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip+1, ex-1]]]]; Sort@ Reap[ While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]]; upto[10^12] (* much faster, Giovanni Resta, Mar 31 2017 *)
PROG
(PARI)
\\note: code does not generate the sequence, just checks for a matching PPT entry
genit(area)={myMax=floor(sqrt(2*area)); i5=myMax; endless=0; soln=List();
while(i5>=2, dun=0; j=2.*myVal/i5; k=floor(j); if(j>k, dun=1 ); if(dun<1,
c=sqrt(i5^2 + k^2); w=floor(c); if(c>w, dun=1); if(dun<1, if(gcd(k, i5)>1, dun=1 ));
if(dun<1, listput(soln, k); listput(soln, i5); listput(soln, w); listsort(soln);
print("soln a, b, c = ", soln[1], " ", soln[2], " ", soln[3] ); dun=2; break ));
i5--; endless++); if(i5<=2&&dun<1, print("no solution ") ); if(i5>2&&dun<2,
print("max iteration limit was hit ", endless) ); print (endless); }
(C++)
#include <iostream>
#include <fstream>
using namespace std;
int main(){ifstream fin1, fin2;
int myValue, myValue2, ptr, fptr, i5, j5;
unsigned long list1[9999]={0};
unsigned long list2[999]={0};
unsigned long final[31]={0};
fin1.open("A024365.txt"); fin2.open("A129912.txt");
ptr=1;
while(ptr<9999)
{fin1>> myValue; fin1.get(); list1[ptr]=myValue;
if(ptr<999)
{fin2>> myValue2; fin2.get(); list2[ptr]=myValue2; }
ptr++; }
fin1.close(); fin2.close(); fptr=1;
for(i5=1; i5<9990; i5++)
{for(j5=1; j5<999; j5++){
if(list1[i5]==list2[j5] )
{
fptr++;
if(fptr>30){break; }
final[fptr]=list1[i5];
cout << final[fptr] << ", ";
break;
}}if(fptr>30){break; }}}
CROSSREFS
Sequence in context: A336219 A065800 A181827 * A145010 A056835 A056836
KEYWORD
nonn,more
AUTHOR
Bill McEachen, Oct 21 2015
EXTENSIONS
a(12)-a(13) from Giovanni Resta, Mar 31 2017
STATUS
approved