This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263576 Stirling transform of Fibonacci numbers (A000045). 5
 0, 1, 2, 6, 23, 101, 490, 2597, 14926, 92335, 610503, 4288517, 31848677, 249044068, 2043448968, 17540957166, 157108128963, 1464813176354, 14187155168782, 142469605397465, 1480903718595721, 15908940627242898, 176382950500197589, 2015650339677868116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Eric Weisstein's MathWorld, Fibonacci Number. Eric Weisstein's MathWorld, Stirling Transform. Eric Weisstein's MathWorld, Bell Polynomial. FORMULA a(n) = Sum_{k=0..n} A000045(k)*Stirling2(n,k). Sum_{k=0..n} a(k)*Stirling1(n,k) = A000045(n). Let phi=(1+sqrt(5))/2. a(n) = (B_n(phi)-B_n(1-phi))/sqrt(5), where B_n(x) is n-th Bell polynomial. 2*B_n(phi) = A263575(n) + a(n)*sqrt(5). E.g.f.: (exp((exp(x)-1)*phi)-exp((exp(x)-1)*(1-phi)))/sqrt(5). G.f.: Sum_{j>=1} Fibonacci(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019 MATHEMATICA Table[Sum[Fibonacci[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}] Table[Simplify[(BellB[n, GoldenRatio] - BellB[n, 1 - GoldenRatio])/Sqrt[5]], {n, 0, 23}] CROSSREFS Cf. A000045, A263575. Sequence in context: A213090 A218225 A279572 * A231444 A248900 A120346 Adjacent sequences:  A263573 A263574 A263575 * A263577 A263578 A263579 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Oct 21 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 05:07 EDT 2019. Contains 325290 sequences. (Running on oeis4.)