login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263498 Decimal expansion of the Gaussian Hypergeometric Function 2F1(1, 3; 5/2; x) at x=1/4. 2
1, 4, 1, 8, 3, 9, 9, 1, 5, 2, 3, 1, 2, 2, 9, 0, 4, 6, 7, 4, 5, 8, 7, 7, 1, 0, 1, 0, 1, 8, 9, 5, 4, 0, 9, 7, 6, 3, 7, 8, 7, 5, 4, 9, 9, 7, 4, 5, 6, 9, 8, 7, 4, 3, 4, 0, 9, 3, 1, 7, 9, 9, 1, 3, 8, 5, 0, 8, 3, 0, 9, 0, 8, 1, 6, 8, 4, 7, 1, 8, 4, 4, 9, 1, 2, 1, 6, 6, 6, 5, 0, 9, 4, 9, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Division through 3  gives 0.472799..  = integral_{x=0..infinity} x^2*I_1(x)*K_1(x)^2 dx, where I and K are Modified Bessel Functions.

LINKS

Table of n, a(n) for n=1..96.

FORMULA

Equals 4*Pi/3^(3/2) - 1. - Vaclav Kotesovec, Apr 10 2016

EXAMPLE

1.41839915231229046745877101018954097637875499745698743409317991385...

MATHEMATICA

RealDigits[4*Pi/3^(3/2) - 1, 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)

PROG

(PARI) 4*Pi/sqrt(27)-1 \\ Charles R Greathouse IV, Aug 01 2016

CROSSREFS

Cf. A073010.

Sequence in context: A199049 A145917 A201661 * A198314 A105534 A021243

Adjacent sequences:  A263495 A263496 A263497 * A263499 A263500 A263501

KEYWORD

cons,nonn

AUTHOR

R. J. Mathar, Oct 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 03:49 EST 2020. Contains 331241 sequences. (Running on oeis4.)