login
A263088
a(n) = A262697(n^2).
3
0, 6, 2, 38, 2, 1, 1, 1, 1, 22, 1, 0, 0, 2, 1, 3, 1, 9, 1, 39, 1, 47, 1, 51, 4, 114, 1, 1, 1, 529, 2, 6, 2, 3, 1, 1, 22, 1, 11, 3, 2, 4, 7, 93, 7, 967, 1, 1, 3, 4, 1, 3, 2, 4, 1, 3, 1, 3, 1, 1, 1, 2, 1, 139, 2, 265, 2, 1, 6, 464, 12, 4, 22, 1, 2, 1503, 2, 6, 1, 5, 2, 2, 1, 2, 5, 1, 2, 4, 2, 1, 1, 6, 3, 386, 1, 1, 3, 800, 1, 2, 1, 7, 5, 1, 1, 3353, 1, 2, 21, 3, 1, 17, 3, 3, 1, 4, 1, 5, 1, 3, 9, 2
OFFSET
0,2
COMMENTS
a(n)=0 if n^2 is in A259934, otherwise number of nodes in that finite subtree whose root is n^2 and edge-relation is defined by A049820(child) = parent. This count includes also leaves and n^2 itself.
LINKS
FORMULA
a(n) = A262697(A000290(n)) = A262697(n^2).
Other identities. For all n >= 0:
If A263087(n) = 0, a(n) = 1.
PROG
(Scheme) (define (A263088 n) (A262697 (A000290 n)))
CROSSREFS
Cf. also A261088, A263087.
Cf. A262515 (positions of zeros), A263093 (positions of ones).
Sequence in context: A038256 A373829 A242529 * A266231 A192355 A100251
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2015
STATUS
approved