login
A262727
Strong (2,3,5)-primes (see comments).
2
2, 7, 13, 41, 151, 173, 181, 223, 331, 641, 1373, 1759, 2011, 3061, 4507, 5867, 9601, 13537, 14533, 14591, 14821, 15101, 15161, 30557, 32707, 37657, 38653, 45361, 46687, 48463, 54331, 54773, 59197, 63853, 70321, 76031, 77041, 78101, 87133, 91541, 95083
OFFSET
1,1
COMMENTS
Let V = (b(1), b(2),...,b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k). Call p a strong V-prime if p is a (b(j),...,b(k))-prime for each of the vectors (b(j),...,b(k)), for j = 1..k.
MATHEMATICA
{b1, b2, b3} = {2, 3, 5}; z = 50000;
u = Select[Prime[Range[z]],
PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &]
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 07 2015
STATUS
approved