login
A262728
(2,3,5,7)-primes (see comments for precise definition).
4
2, 173, 181, 233, 443, 877, 967, 1373, 1831, 4001, 4231, 4663, 8191, 8753, 9043, 10333, 10631, 13537, 14591, 16931, 18211, 25411, 32707, 32843, 33637, 37573, 54773, 56167, 63853, 64513, 78101, 84131, 100207, 102667, 106087, 112571, 113153, 133087, 149531
OFFSET
1,1
COMMENTS
Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k).
LINKS
EXAMPLE
Consider the number a(2) = 173:
in base 2, a(2) = 10101101, which is the prime 172;
in base 3, 10101101 is the prime 2467;
in base 5, 10101101 is the prime 81401;
in base 7, 10101101 is the prime 840743
MATHEMATICA
{b1, b2, b3, b4} = {2, 3, 5, 7}; z = 15000;
u = Select[Prime[Range[z]],
PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] &]
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
Sequence in context: A243230 A051030 A339641 * A139935 A281958 A172231
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Oct 02 2015
STATUS
approved