login
A262457
T(n,k)=Number of (n+3)X(k+3) 0..1 arrays with each row and column divisible by 15, read as a binary number with top and left being the most significant bits.
9
2, 3, 3, 5, 5, 5, 9, 9, 9, 9, 18, 17, 17, 17, 18, 35, 51, 33, 33, 51, 35, 69, 117, 389, 65, 389, 117, 69, 137, 281, 1097, 5961, 5961, 1097, 281, 137, 274, 705, 3153, 17745, 144930, 17745, 3153, 705, 274, 547, 2115, 9185, 52961, 463731, 463731, 52961, 9185, 2115
OFFSET
1,1
COMMENTS
Table starts
...2....3......5........9..........18..........35..........69.........137
...3....5......9.......17..........51.........117.........281.........705
...5....9.....17.......33.........389........1097........3153........9185
...9...17.....33.......65........5961.......17745.......52961......158337
..18...51....389.....5961......144930......463731.....2614661....77055561
..35..117...1097....17745......463731.....1940693....24095961..1000168433
..69..281...3153....52961.....2614661....24095961...589377041.21554653569
.137..705...9185...158337....77055561..1000168433.21554653569
.274.2115.102085.21044745..6435089442.62660692675
.547.6597.475273.93470481.32786542995
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-4) -2*a(n-5)
k=2: [order 46]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1..1..0..1....0..0..1..1..1..1..0....1..0..0..1..0..1..1
..0..1..0..1..1..0..1....0..0..0..0..0..0..0....1..0..0..1..0..1..1
..0..0..0..0..0..0..0....0..0..1..1..1..1..0....1..0..0..1..0..1..1
..0..1..0..1..1..0..1....0..0..1..1..1..1..0....1..0..0..1..0..1..1
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....0..0..1..1..1..1..0....0..0..0..0..0..0..0
..0..1..0..1..1..0..1....0..0..0..0..0..0..0....0..0..0..0..0..0..0
CROSSREFS
Sequence in context: A081165 A289749 A087172 * A286870 A262319 A262488
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 23 2015
STATUS
approved