login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262460 Lexicographically earliest sequence of distinct terms such that the hexadecimal representations of two consecutive terms overlap. 4
1, 16, 17, 18, 2, 32, 34, 33, 19, 3, 35, 48, 51, 49, 20, 4, 36, 50, 37, 5, 21, 65, 22, 6, 38, 66, 39, 7, 23, 81, 24, 8, 40, 82, 41, 9, 25, 97, 26, 10, 42, 98, 43, 11, 27, 113, 28, 12, 44, 114, 45, 13, 29, 129, 30, 14, 46, 130, 47, 15, 31, 145, 57, 67, 52, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Suggested by Paul Tek's A262323;

two numbers are overlapping if a nonempty prefix of one equals a suffix of the other;

permutation of the natural numbers with inverse A262461.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Hexadecimal

Wikipedia, Hexadecimal

Index entries for sequences that are permutations of the natural numbers

EXAMPLE

Table of initial terms: the HEX column gives the hexadecimal representation with aligned overlapping digits.

.   n | a(n) | HEX          n | a(n) | HEX          n | a(n) | HEX

. ----+------+-------     ----+------+-------     ----+------+-------

.   1 |    1 |  1          25 |   38 |   26        49 |   44 |    2C

.   2 |   16 |  10         26 |   66 |  42         50 |  114 |   72

.   3 |   17 | 11          27 |   39 |   27        51 |   45 |    2D

.   4 |   18 |  12         28 |    7 |    7        52 |   13 |     D

.   5 |    2 |   2         29 |   23 |   17        53 |   29 |    1D

.   6 |   32 |   20        30 |   81 |  51         54 |  129 |   81

.   7 |   34 |  22         31 |   24 |   18        55 |   30 |    1E

.   8 |   33 |   21        32 |    8 |    8        56 |   14 |     E

.   9 |   19 |    13       33 |   40 |   28        57 |   46 |    2E

.  10 |    3 |     3       34 |   82 |  52         58 |  130 |   82

.  11 |   35 |    23       35 |   41 |   29        59 |   47 |    2F

.  12 |   48 |     30      36 |    9 |    9        60 |   15 |     F

.  13 |   51 |    33       37 |   25 |   19        61 |   31 |    1F

.  14 |   49 |     31      38 |   97 |  61         62 |  145 |   91

.  15 |   20 |      14     39 |   26 |   1A        63 |   57 |  39

.  16 |    4 |       4     40 |   10 |    A        64 |   67 | 43

.  17 |   36 |      24     41 |   42 |   2A        65 |   52 |  34

.  18 |   50 |     32      42 |   98 |  62         66 |   64 |   40

.  19 |   37 |      25     43 |   43 |   2B        67 |   68 |  44

.  20 |    5 |       5     44 |   11 |    B        68 |   69 |   45

.  21 |   21 |      15     45 |   27 |   1B        69 |   80 |    50

.  22 |   65 |     41      46 |  113 |  71         70 |   53 |   35

.  23 |   22 |      16     47 |   28 |   1C        71 |   83 |    53

.  24 |    6 |       6     48 |   12 |    C        72 |   54 |     36

PROG

(Haskell)

import Data.List (inits, tails, intersect, delete, genericIndex)

a262460 n = genericIndex a262460_list (n - 1)

a262460_list = 1 : f [1] (drop 2 a262437_tabf) where

   f xs tss = g tss where

     g (ys:yss) | null (intersect its $ tail $ inits ys) &&

                  null (intersect tis $ init $ tails ys) = g yss

                | otherwise = (foldr (\t v -> 16 * v + t) 0 ys) :

                              f ys (delete ys tss)

     its = init $ tails xs; tis = tail $ inits xs

CROSSREFS

Cf. A262323, A262411, A262437, A262461 (inverse).

Sequence in context: A239533 A070575 A004505 * A190582 A004457 A248501

Adjacent sequences:  A262457 A262458 A262459 * A262461 A262462 A262463

KEYWORD

nonn,base

AUTHOR

Reinhard Zumkeller, Sep 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 22:51 EST 2019. Contains 319251 sequences. (Running on oeis4.)