login
A262332
T(n,k) = Number of (n+1) X (k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits.
8
2, 3, 3, 6, 5, 6, 11, 15, 15, 11, 22, 33, 90, 33, 22, 43, 99, 351, 351, 99, 43, 86, 261, 2106, 2399, 2106, 261, 86, 171, 783, 10935, 26131, 26131, 10935, 783, 171, 342, 2241, 65610, 252097, 570922, 252097, 65610, 2241, 342, 683, 6723, 378351, 2767631, 10789339
OFFSET
1,1
COMMENTS
Table starts
...2.....3........6.........11............22...............43
...3.....5.......15.........33............99..............261
...6....15.......90........351..........2106............10935
..11....33......351.......2399.........26131...........252097
..22....99.....2106......26131........570922.........10789339
..43...261....10935.....252097......10789339........394241389
..86...783....65610....2767631.....237172426......16940254423
.171..2241...378351...29452071....5028462531.....699094613961
.342..6723..2270106..323841891..110616890922...30056993215803
.683.19845.13482855.3532758473.2411745951979.1279198648576981
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3)
k=3: a(n) = 6*a(n-1) +9*a(n-2) -54*a(n-3)
k=4: [order 7]
k=5: [order 11]
k=6: [order 15]
k=7: [order 19]
EXAMPLE
Some solutions for n=4, k=4
..0..0..0..0..0....0..1..1..1..1....1..1..0..1..1....0..0..0..1..1
..1..1..1..1..0....1..1..0..0..0....1..0..1..0..1....1..1..0..1..1
..1..1..1..1..0....1..1..1..1..0....1..0..0..1..0....1..0..0..1..0
..1..1..0..0..0....0..1..0..0..1....1..1..0..0..0....0..0..0..1..1
..1..1..0..0..0....0..0..1..1..0....0..0..1..1..0....0..1..0..0..1
CROSSREFS
Column 1 is A005578(n+1).
Sequence in context: A014498 A186286 A023821 * A262240 A333660 A187754
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 18 2015
STATUS
approved