login
A262240
T(n,k) = Number of (n+3) X (k+3) 0..1 arrays with each row and column divisible by 11, read as a binary number with top and left being the most significant bits.
5
2, 3, 3, 6, 5, 6, 12, 13, 13, 12, 24, 31, 60, 31, 24, 47, 85, 238, 238, 85, 47, 94, 223, 1148, 1306, 1148, 223, 94, 187, 669, 5057, 10747, 10747, 5057, 669, 187, 373, 1733, 26546, 77490, 164087, 77490, 26546, 1733, 373, 745, 4805, 110661, 778464, 2091976
OFFSET
1,1
COMMENTS
Table starts
...2.....3......6......12.......24.......47.......94.......187......373.....745
...3.....5.....13......31.......85......223......669......1733.....4805...13777
...6....13.....60.....238.....1148.....5057....26546....110661...511785.2491813
..12....31....238....1306....10747....77490...778464...4345849.31098659
..24....85...1148...10747...164087..2091976.40276976.430768569
..47...223...5057...77490..2091976.45391152
..94...669..26546..778464.40276976
.187..1733.110661.4345849
.373..4805.511785
.745.13777
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-5) +3*a(n-6) -2*a(n-7).
k=2: [order 29].
EXAMPLE
Some solutions for n=5, k=4
..1..1..0..0..0..1..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1
..0..0..0..0..0..0..0....1..0..0..0..0..1..0....0..0..0..1..0..1..1
..1..1..0..0..0..1..1....0..1..1..0..1..1..1....0..1..1..0..1..1..1
..1..1..0..0..0..1..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1
..1..0..0..1..1..0..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..1..1
..1..0..0..1..1..0..1....1..1..0..1..1..1..0....0..0..0..0..0..0..0
..1..0..0..1..1..0..1....0..1..1..0..1..1..1....0..1..1..0..1..1..1
CROSSREFS
Sequence in context: A186286 A023821 A262332 * A333660 A187754 A347732
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 15 2015
STATUS
approved