

A261904


Largest x such that n can be written as n = x^2 + y^2 + z^2 with x >= y >= z >= 0, or 1 if no such x exists.


4



0, 1, 1, 1, 2, 2, 2, 1, 2, 3, 3, 3, 2, 3, 3, 1, 4, 4, 4, 3, 4, 4, 3, 1, 4, 5, 5, 5, 1, 5, 5, 1, 4, 5, 5, 5, 6, 6, 6, 1, 6, 6, 5, 5, 6, 6, 6, 1, 4, 7, 7, 7, 6, 7, 7, 1, 6, 7, 7, 7, 1, 6, 7, 1, 8, 8, 8, 7, 8, 8, 6, 1, 8, 8, 8, 7, 6, 8, 7, 1, 8, 9, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

a(n) = 1 iff n is in A004215, a(n) >= 0 iff n is in A000378.
Somehow maximizing x seems like the right thing to do (since it is natural to try a greedy algorithm first). If we minimize x we get A261915.


LINKS

David Consiglio, Jr., Table of n, a(n) for n = 0..10000
David Consiglio, Jr., Python Program
Index entries for sequences related to sums of squares


EXAMPLE

Tabls showing initial values of n,x,y,z:
0 0 0 0
1 1 0 0
2 1 1 0
3 1 1 1
4 2 0 0
5 2 1 0
6 2 1 1
7 1 1 1
8 2 2 0
9 3 0 0
10 3 1 0
11 3 1 1
12 2 2 2
13 3 2 0
14 3 2 1
15 1 1 1
16 4 0 0
17 4 1 0
18 4 1 1
19 3 3 1
20 4 2 0
...


CROSSREFS

Cf. A000378, A004215, A005875, A261915.
Analogs for 4 squares: A178786 and A122921.
Sequence in context: A262982 A205011 A130790 * A297030 A266348 A179647
Adjacent sequences: A261901 A261902 A261903 * A261905 A261906 A261907


KEYWORD

sign


AUTHOR

N. J. A. Sloane, Sep 08 2015


EXTENSIONS

More terms from David Consiglio, Jr., Sep 08 2015


STATUS

approved



