OFFSET
1,1
COMMENTS
Alternatively: Primes of the form (p + q)^2 + 1 where p and q are twin primes.
All the terms are congruent to 1 (mod 3).
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..10000
EXAMPLE
577 appears in the sequence because it is a prime resulting from twin prime pair (11,13): (11 + 13)^2 + 1 = 577.
7057 appears in the sequence because it is a prime resulting from twin prime pair (41,43): (41 + 43)^2 + 1 = 7057.
MAPLE
MATHEMATICA
PROG
(PARI) forprime(p = 1, 10000, if(isprime(p+2) && isprime((p + p + 2)^2 + 1), print1(( (p + p + 2)^2 + 1), ", ")));
(PARI) list(lim)=my(v=List(), t, p=2); forprime(q=3, sqrtint(lim\1-1)\2+1, if(q-p==2 && isprime(t=(p+q)^2+1), listput(v, t)); p=q); Vec(v) \\ Charles R Greathouse IV, Sep 06 2015
(Magma) [k : p in PrimesUpTo (10000) | IsPrime(p+2) and IsPrime(k) where k is ((p + p + 2)^2 + 1)];
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 05 2015
STATUS
approved