login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261691
Change of base from fractional base 3/2 to base 3.
1
0, 1, 2, 6, 7, 8, 21, 22, 23, 63, 64, 65, 69, 70, 71, 192, 193, 194, 207, 208, 209, 213, 214, 215, 579, 580, 581, 621, 622, 623, 627, 628, 629, 642, 643, 644, 1737, 1738, 1739, 1743, 1744, 1745, 1866, 1867, 1868, 1881, 1882, 1883, 1887, 1888, 1889, 1929, 1930
OFFSET
0,3
COMMENTS
To obtain a(n), we interpret A024629(n) as a base 3 representation (instead of base 3/2). More precisely, if A024629(n) = A007089(m), then a(n) = m.
The digits used in fractional base 3/2 are 0,1, and 2, which are the same as the digits used in base 3.
LINKS
FORMULA
For n = Sum_{i=0..m}c_i*(3/2)^i with each c_i in {0,1,2}, a(n) = Sum_{i=0..m}c_i*3^i.
From Rémy Sigrist, Apr 06 2021: (Start)
Apparently:
- a(3*n) = a(3*n-1) + A003462(1+A087088(n)) for any n > 0,
- a(3*n+1) = a(3*n) + 1 for any n >= 0,
- a(3*n+2) = a(3*n+1) + 1 for any n >= 0,
(End)
EXAMPLE
The base 3/2 representation of 7 is (2,1,1); i.e., 7 = 2*(3/2)^2 + 1*(3/2) + 1. Since 2*(3^2) + 1*3 + 1*1 = 22, we have a(7) = 22.
PROG
(Sage)
def changebase(n):
L=[n]
i=1
while L[i-1]>2:
x=L[i-1]
L[i-1]=x.mod(3)
L.append(2*floor(x/3))
i+=1
return sum([L[i]*3^i for i in [0..len(L)-1]])
[changebase(n) for n in [0..100]]
(PARI) a(n) = { my (v=0, t=1); while (n, v+=t*(n%3); n=(n\3)*2; t*=3); v } \\ Rémy Sigrist, Apr 06 2021
KEYWORD
nonn,base
AUTHOR
Tom Edgar, Aug 28 2015
STATUS
approved