login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261544
a(n) = Sum_{k=0..n} 1000^k.
4
1, 1001, 1001001, 1001001001, 1001001001001, 1001001001001001, 1001001001001001001, 1001001001001001001001, 1001001001001001001001001, 1001001001001001001001001001, 1001001001001001001001001001001, 1001001001001001001001001001001001
OFFSET
0,2
COMMENTS
A sequence of palindromic numbers.
LINKS
Colin Barker, Table of n, a(n) for n = 0..333 (corrected by Michel Marcus, Jan 19 2019)
Eric Weisstein's World of Mathematics, Palindromic Number.
FORMULA
a(n) = (1000^(n + 1) - 1)/999.
a(n) = 1001*a(n-1) - 1000*a(n-2). - Colin Barker, Aug 24 2015
G.f.: 1 / ((x-1)*(1000*x-1)). - Colin Barker, Aug 24 2015
E.g.f.: (1/999)*(1000000*exp(1000*x) - exp(x)). - G. C. Greubel, Aug 29 2015
EXAMPLE
From Bruno Berselli, Aug 25 2015: (Start)
a(n) is the binary representation of A023001
-------------------------------------------------
1 ........................................... 1
1001 ........................................ 9
1001001 ..................................... 73
1001001001 ................................ 585
1001001001001 ............................ 4681
1001001001001001 ........................ 37449
1001001001001001001 .................... 299593
1001001001001001001001 ................ 2396745
1001001001001001001001001 ............ 19173961, etc.
(End)
MATHEMATICA
Table[(1000^(n + 1) - 1)/999, {n, 0, 15}]
LinearRecurrence[{1001, -1000}, {1, 1001}, 20] (* Vincenzo Librandi, Aug 24 2015 *)
PROG
(PARI) Vec(1 / ((x-1)*(1000*x-1)) + O(x^20)) \\ Colin Barker, Aug 24 2015
(Magma) [(1000^(n+1)-1)/999: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
CROSSREFS
Subsequence of A033146.
Sums of 100^k: A094028; sums of 10^k: A000042.
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
Sequence in context: A109431 A267599 A140927 * A097659 A295462 A143906
KEYWORD
nonn,base,easy
AUTHOR
Ilya Gutkovskiy, Aug 24 2015
STATUS
approved