The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269025 a(n) = Sum_{k = 0..n} 60^k. 5
 1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of powers of 60 (A159991). Converges in a 10-adic sense to ...762711864406779661. More generally, the ordinary generating function for the Sum_{k = 0..n} m^k is 1/((1 - m*x)*(1 - x)). Also, Sum_{k = 0..n} m^k = (m^(n + 1) - 1)/(m - 1). LINKS Index entries for linear recurrences with constant coefficients, signature (61,-60). FORMULA G.f.: 1/((1 - 60*x)*(1 - x)). a(n) = (60^(n + 1) - 1)/59 = 60^n + floor(60^n/59). a(n+1) = 60*a(n) + 1, a(0)=1. a(n) = Sum_{k = 0..n} A159991(k). Sum_(n>=0} 1/a(n) = 1.016671221665660580331... MATHEMATICA Table[Sum[60^k, {k, 0, n}], {n, 0, 15}] Table[(60^(n + 1) - 1)/59, {n, 0, 15}] LinearRecurrence[{61, -60}, {1, 61}, 15] PROG (PARI) a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016 CROSSREFS Cf. A159991. Cf. similar sequences of the form (k^n-1)/(k-1): A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11), A016125 (k=12), A091030 (k=13), A135519 (k=14), A135518 (k=15), A131865 (k=16), A091045 (k=17), A218721 (k=18), A218722 (k=19), A064108 (k=20), A218724-A218734 (k=21..31), A132469 (k=32), A218736-A218753 (k=33..50), this sequence (k=60), A133853 (k=64), A094028 (k=100), A218723 (k=256), A261544 (k=1000). Sequence in context: A191092 A234028 A135647 * A207231 A207224 A207011 Adjacent sequences:  A269022 A269023 A269024 * A269026 A269027 A269028 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Feb 18 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 20:47 EDT 2020. Contains 337975 sequences. (Running on oeis4.)