login
A261523
a(n) = prime(n+1)! / (prime(n+1) - prime(n))!.
1
6, 60, 2520, 1663200, 3113510400, 14820309504000, 60822550204416000, 1077167364120207360000, 12280224991305141603532800000, 4111419327088961408862781440000000, 19116323737814368119883304974417920000000, 1393855275548491962840419252226697986048000000000, 30207631531686917818677566034256998753632256000000000
OFFSET
1,1
COMMENTS
The author comments that this sequence is related to the product A058077(n) * A039716(n). - Charles R Greathouse IV, Aug 29 2015
FORMULA
a(n) = prime(n+1)! / (prime(n+1) - prime(n))! = A058077(n) * A039716(n).
MAPLE
A261523:=n->ithprime(n+1)!/(ithprime(n+1)-ithprime(n))!: seq(A261523(n), n=1..15); # Wesley Ivan Hurt, Aug 23 2015
MATHEMATICA
Table[Prime[i + 1]!/(Prime[i + 1] - Prime[i])!, {i, 15}] (* Vincenzo Librandi, Aug 23 2015 *)
PROG
(PARI) vector( 15, n, prime(n+1)! / (prime(n+1) - prime(n))! )
(PARI) vector( 15, n, binomial(prime(n+1), prime(n)) * prime(n)! )
(Magma) [Factorial(NthPrime(n+1)) / Factorial((NthPrime(n+1) - NthPrime(n))): n in [1..15]]; // Vincenzo Librandi, Aug 23 2015
CROSSREFS
Sequence in context: A271682 A082681 A061431 * A318131 A202620 A075069
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Aug 23 2015
STATUS
approved