login
Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.
4

%I #24 Sep 08 2019 07:21:21

%S 3,5,5,1,8,1,7,4,2,3,1,4,3,7,7,3,9,2,8,8,2,2,4,4,4,7,3,6,4,7,6,3,2,6,

%T 3,6,7,0,8,7,4,6,9,5,4,1,7,5,3,2,2,1,3,4,2,3,8,1,2,9,4,9,9,7,1,2,8,0,

%U 0,1,8,0,5,7,5,5,5,7,8,2,8,8,6,7,9,8,1,3,8,1,0,8,2,4,1,6,7

%N Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 298.

%H Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; p. 478.

%e 0.35518174231437739288224447364763263670874695417532...

%t digits = 97; m = 2 digits + 10; For[gf = 0; i = 0, i <= m, i++, gf = Series[1 + x*(gf^3/6 + (gf /. x -> x^2)*gf/2 + (gf /. x -> x^3)/3), {x, 0, m + 1}] // Normal];

%t g[r_] := Module[{r2, r3, X, ym}, r2 = gf /. x -> r^2; r3 = gf /. x -> r^3; X[y_] = (y - 1)/(y^3/6 + r2*y/2 + r3/3); ym = y /. FindRoot[X'[y] == 0, {y, 2}, WorkingPrecision -> digits + 5]; X[ym]]; rho = FixedPoint[g, 1/3, SameTest -> (Abs[#1 - #2] < 10^-digits &)]; RealDigits[rho, 10, digits] // First

%Y Cf. A000598, A000642, A002094, A121331, A244399.

%K nonn,cons

%O 0,1

%A _Jean-François Alcover_, Aug 15 2015

%E More digits from _Vaclav Kotesovec_, Aug 15 2015

%E More digits and Mma code updated by _Jean-François Alcover_, Apr 18 2016