OFFSET
0,3
COMMENTS
Antidiagonal sums of irregular triangle A063746 yields this sequence at offset 1.
From Jeremy Lovejoy, Oct 13 2022: (Start)
a(n) is also the number of partitions of n whose rank is at least -1, the rank of a partition being the largest part minus the number of parts. For example, the 7 partitions of 5 are (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), and (1,1,1,1,1), having ranks 4,2,1,0,-1,-2, and -4, respectively, and so a(5) = 5.
a(n) is also the number of partitions of n such that the smallest positive multiple of 3 not occurring in the partition is not a multiple of 6. For example, in the 7 partitions of 5 listed above, the smallest positive multiples of 3 not occurring are 3,3,6,6,3,3, and 3, respectively, and so a(5) = 5. (End)
LINKS
George E. Andrews, David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
Rupam Barman, Ajit Singh, On Mex-related partition functions of Andrews and Newman, arXiv:2009.11602 [math.NT], 2020.
FORMULA
G.f.: (1/Product_{n>=1}(1-x^n))*Sum_{n>=0}(-1)^n*x^((3*n^2+3*n)/2). - Jeremy Lovejoy, Oct 13 2022.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 10*x^7 +...
where
A(x) = 1 + x*(1-x^2)/(1-x) + x^2*(1-x^3)*(1-x^4)/((1-x)*(1-x^2)) + x^3*(1-x^4)*(1-x^5)*(1-x^6)/((1-x)*(1-x^2)*(1-x^3)) + x^4*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +...
MATHEMATICA
Table[SeriesCoefficient[Sum[x^k * Product[(1-x^(k+j))/(1-x^j), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 08 2015 *)
PROG
(PARI) {a(n) = local(A=1); A = sum(m=0, n, x^m*prod(k=1, m, (1-x^(m+k))/(1-x^k +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 03 2015
STATUS
approved