login
A325434
Row sums of A325433.
3
0, 1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 60, 80, 101, 133, 167, 216, 270, 344, 428, 540, 667, 834, 1026, 1271, 1555, 1914, 2330, 2849, 3453, 4197, 5065, 6125, 7360, 8858, 10605, 12706, 15155, 18086, 21497, 25557, 30279, 35870, 42366, 50026, 58909, 69346
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{k=1..n} ((-1)^(k-1)*Sum_{j=0..k-1} (-1)^j*(p(n - j*(3*j + 1)/2) - p(n - j*(3*j + 5)/2 - 1))), where p(n) = A000041(n) is the number of partitions of n.
Conjecture: Lim_{n->infinity} a(n)/A000041(n) = 1/3.
MATHEMATICA
T[n_, k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j*(3*j+1)/2]-PartitionsP[n-j*(3*j+5)/2-1]), {j, 0, k-1}]; (* A325433 *)
Table[Sum[T[n, k], {k, 1, n}], {n, 1, 50}]
PROG
(PARI)
T(n, k) = (-1)^(k-1)*sum(j=0, k-1, (-1)^j*(numbpart(n-j*(3*j+1)/2)-numbpart(n-j*(3*j+5)/2-1))); \\ A325433
a(n) = sum(k=1, n, T(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Apr 27 2019
STATUS
approved