This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260327 Triangle read by rows: T(n,k) (0 <= k <= n) gives numerators of coefficients in Nörlund's polynomials D_{2n}(x). 2
 1, 0, -1, 0, 2, 5, 0, -16, -42, -35, 0, 144, 404, 420, 175, 0, -768, -2288, -2684, -1540, -385, 0, 1061376, 3327584, 4252248, 2862860, 1051050, 175175, 0, -552960, -1810176, -2471456, -1849848, -820820, -210210, -25025, 0, 200005632, 679395072, 978649472, 792548432, 397517120, 125925800, 23823800, 2127125 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Jean-François Alcover, Table of n, a(n) for n = 0..230 Max Alekseyev, An explicit representation for polynomials generated by a power of x/sin(x). Answer. MathOverflow 2017. N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 460. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 460 [Annotated scanned copy of pages 144-151 and 456-463] FORMULA E.g.f. Sum_{n>=0} D_{2n}(x) y^(2n)/(2n)! = (y/sinh(y))^x. - Max Alekseyev, Jul 04 2019 EXAMPLE Triangle begins: 1, 0,-1, 0,2,5, 0,-16,-42,-35, 0,144,404,420,175, 0,-768,-2288,-2684,-1540,-385, 0,1061376,3327584,4252248,2862860,1051050,175175, ... The first few polynomials are (as listed in Nörlund, page 460): [ 0] 1; [ 2] -n/3; [ 4]  n*(5*n + 2)/15; [ 6] -n*(35*n^2  + 42*n     + 16)/63; [ 8]  n*(175*n^3 + 420*n^2  + 404*n    + 144)/135; [10] -n*(385*n^4 + 1540*n^3 + 2684*n^2 + 2288*n + 768)/99; MAPLE NorlundD := proc(n) if irem(n, 2) = 1 then return unapply(0, x) fi; series((z/sin(z))^x, z, n+1): return unapply((-1)^iquo(n, 2)*n!*coeff(%, z, n), x) end: A260327_row := n -> seq(coeff(numer(NorlundD(2*n)(x)), x, k), k=0..n): for n from 0 to 6 do A260327_row(n) od; # Peter Luschny, Jul 01 2019 MATHEMATICA NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify; Table[NorlundD[nu, n] // Together // Numerator // CoefficientList[#, n]&, {nu, 0, 12, 2}] (* Jean-François Alcover, Jul 01 2019 *) PROG (PARI) { A260327_row(n) = my(t, Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); Vecrev(t*denominator(content(t))); } \\ Max Alekseyev, Jul 04 2019 CROSSREFS For denominators see A260326. Sequence in context: A192042 A214119 A324611 * A062627 A011217 A078506 Adjacent sequences:  A260324 A260325 A260326 * A260328 A260329 A260330 KEYWORD sign,tabl,look,frac AUTHOR N. J. A. Sloane, Jul 25 2015 EXTENSIONS Typo in data and example corrected by Jean-François Alcover, Jul 01 2019 More terms by Peter Luschny, Jul 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 13:01 EDT 2019. Contains 328222 sequences. (Running on oeis4.)