This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259056 a(n) gives the determinant of a bisymmetric n X n matrix involving the entries 1, 2, ..., A002620(n+1). 1
 1, -3, -16, 60, 384, -1680, -12288, 60480, 491520, -2661120, -23592960, 138378240, 1321205760, -8302694400, -84557168640, 564583219200, 6088116142080, -42908324659200, -487049291366400, 3604299271372800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The maximal number of distinct entries of an n X n bisymmetric matrix B_n is A002620(n+1) = ((n+1)/2)^2 if n is odd and = n*(n+2)/4 if n is even. See a comment and example under A002620. Here the first A002620(n+1) positive numbers are used consecutively, that is B_n[i, j] = (i-1)*n - (i-1)^2 + j for j=i..N-(i-1) and i = 1..ceiling(n/2). Conjecture: a(2*n-1) = (-1)^(n-1)*A034976(n),  n >= 1. For a(2*n)/3 see A259057(n), n >= 1 (assuming that a(2*n) is always divisible by 3). LINKS Wikipedia, Bisymmetric Matrix . FORMULA Determinant of the above defined bisymmetric matrix B_n, n >= 1. EXAMPLE n = 1, B_1 [1], a(1) = det(B_1) = 1. n = 2, B_2 = [[1,2],[2,1]], a(2) = det(B_2) = -3. n = 3: B_3 = [[1,2,3],[2,4,2],[3,2,1]], a(3) = det(B_3) = -16 n = 4: B_4 = [[1,2,3,4],[2,5,6,3],[3,6,5,2],[4,3,2,1]], a(4) = det(B_4) = 60. CROSSREFS Cf. A002620, A259057. Sequence in context: A210323 A062474 A073999 * A155160 A323941 A267036 Adjacent sequences:  A259053 A259054 A259055 * A259057 A259058 A259059 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Jul 07 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 05:39 EDT 2019. Contains 324318 sequences. (Running on oeis4.)