login
A258893
Number of (n+2) X (7+2) 0..1 arrays with no 3 X 3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum.
1
271350, 104329, 33252, 17424, 21320, 26244, 32400, 40000, 49288, 60516, 74000, 90000, 108936, 131044, 156880, 186624, 221000, 260100, 304848, 355216, 412360, 476100, 547856, 627264, 716040, 813604, 922000, 1040400, 1171208, 1313316
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 11.
Empirical for n mod 2 = 0: a(n) = n^4 + 10*n^3 + 217*n^2 + 960*n + 9216 for n > 3.
Empirical for n mod 2 = 1: a(n) = n^4 + 10*n^3 + 218*n^2 + 946*n + 9265 for n > 3.
Empirical g.f.: x*(271350 - 438371*x - 718106*x^2 + 1370362*x^3 + 545942*x^4 - 1479832*x^5 - 41458*x^6 + 602478*x^7 - 38780*x^8 - 54557*x^9 - 18836*x^10) / ((1 - x)^5*(1 + x)^3). - Colin Barker, Dec 23 2018
EXAMPLE
Some solutions for n=1:
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0
0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1
CROSSREFS
Column 7 of A258894.
Sequence in context: A206001 A244561 A137715 * A237181 A013998 A236623
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 14 2015
STATUS
approved