login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258894 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum 9
242, 900, 900, 3036, 2304, 3036, 10201, 4489, 4489, 10201, 30870, 10680, 6072, 10680, 30870, 94249, 23409, 8100, 8100, 23409, 94249, 271350, 51188, 12804, 7225, 12804, 51188, 271350, 786769, 104329, 20164, 9604, 9604, 20164, 104329, 786769, 2190720 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

.....242....900...3036.10201.30870.94249.271350.786769.2190720.6135529.16733464

.....900...2304...4489.10680.23409.51188.104329.216395..430336..849760..1635841

....3036...4489...6072..8100.12804.20164..33252..54756...88312..141376...227568

...10201..10680...8100..7225..9604.13221..17424..23393...30276...39565....50176

...30870..23409..12804..9604.12544.16384..21320..27556...35360...44944....56680

...94249..51188..20164.13221.16384.21025..26244..33485...41616...52425....64516

..271350.104329..33252.17424.21320.26244..32400..40000...49288...60516....74000

..786769.216395..54756.23393.27556.33485..40000..48841...58564...71285....85264

.2190720.430336..88312.30276.35360.41616..49288..58564...69696...82944....98600

.6135529.849760.141376.39565.44944.52425..60516..71285...82944...97969...114244

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..9378

FORMULA

Empirical for column k:

k=1: [linear recurrence of order 34]

k=2: [order 24] for n>27

k=3: [order 24] for n>27

k=4: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8) for n>11

k=5: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8) for n>11

k=6: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8) for n>11

k=7: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8) for n>11

Empirical quasipolynomials for column k:

k=4: polynomial of degree 4 plus a quasipolynomial of degree 2 with period 2 for n>3

k=5: polynomial of degree 4 plus a quasipolynomial of degree 2 with period 2 for n>3

k=6: polynomial of degree 4 plus a quasipolynomial of degree 2 with period 2 for n>3

k=7: polynomial of degree 4 plus a quasipolynomial of degree 2 with period 2 for n>3

EXAMPLE

Some solutions for n=4 k=4

..1..1..1..0..0..0....1..1..0..0..0..0....1..0..1..0..1..0....1..0..0..0..0..1

..1..1..0..1..0..0....1..0..1..0..0..0....1..1..1..1..1..1....0..0..0..0..0..1

..1..0..1..0..1..1....1..1..0..1..0..1....1..1..1..1..1..1....1..0..0..0..0..1

..1..1..0..1..0..1....1..0..1..0..1..0....1..1..1..1..1..1....0..0..0..0..0..1

..1..0..1..0..1..1....0..1..0..1..0..1....0..1..1..1..1..1....0..0..0..0..0..1

..1..1..0..1..1..1....0..0..0..0..0..1....1..0..1..0..1..0....0..0..0..0..1..1

CROSSREFS

Sequence in context: A094908 A205594 A070284 * A258887 A234484 A160551

Adjacent sequences:  A258891 A258892 A258893 * A258895 A258896 A258897

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Jun 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 10:32 EST 2019. Contains 319363 sequences. (Running on oeis4.)