login
A258320
Sum of the digits of n exceeds the sum of the digits of n^2 and the sum of digits of n^3.
1
49639, 496390, 736968, 4963900, 7369680, 7989889, 8962888, 49639000, 73696800, 79898890, 89628880, 284799946, 467995756, 468754968, 479593884, 479698887, 493968877, 496390000, 736968000, 789499856, 795875871, 796999858, 798968787, 798988900, 896288800
OFFSET
1,1
COMMENTS
Intersection of A064399 and A064209.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..463 (terms < 2^(128/3))
EXAMPLE
n = 49639 is in the sequence because sod(n) = 31, sod(n^2) = 25 and sod(n^3) = 28. Here n^2 = 2464030321 and n^3 = 122312001104119.
MATHEMATICA
sod[n_]:=Plus@@ IntegerDigits@ n; Select[Range[10^6], sod[#^3] < sod@# && sod[#^2] < sod@# &]
CROSSREFS
Sequence in context: A234563 A251881 A187856 * A258131 A081636 A151636
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, May 26 2015
STATUS
approved